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1 Notations and Abbreviations
Table 1 lists the abbreviations of definitions used in the paper.
Table 2 provides the abbreviations of different components in
PerFRDiff. Table 3 and 4 list the notations of variables and latent
representations used in the paper. Table 5 lists the notations of
the used loss functions.

Table 1: Abbreviations for definitions

Abbreviations Descriptions

PMAFRG Personalised Multiple Appropriate Reaction
Generation

MAFRG Multiple Appropriate Reaction Generation
ML Machine learning
GT Ground truth
AFRs Appropriate facial reactions
3DMM 3D Morphable Model
MFCC Mel-frequency Cepstral Coefficients

2 Implementation Details
Network details: In this study, we adopt: (1) the torchaudio pack-
age1 to extract MFCC features from the raw speaker audio signal;
(2) the FaceVerse [7] to extract 58 3DMM coefficients (i.e., 52 coef-
ficients describing facial expression, 3 coefficients describing the
transition and 3 coefficients rotation) from the speaker face video;
and (3) the GraphAU [4, 5] to extract facial emotional represen-
tations, including occurrences of 15 action units (i.e., AU1, AU2,
1https://pytorch.org/audio/stable/index.html
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Table 2: Abbreviations for PerFRDiff components

Abbreviations Components

SBE Speaker Behaviour Encoding
GAFRG Generic Appropriate Facial Reaction

Generator
GAFRG𝜃𝑙 An personalised instance of GAFRG
GAFRG𝑘 The 𝑘th layer in the GAFRG
GAFRG𝑙

𝑘
The 𝑘th layer in the GAFRG𝜃𝑙

PCSM Personalised Cognitive Style Modelling
PSSL Personalised Style Space Learning
PWSG Personalised Weight Shift Generation
Encaud Speaker audio behaviour semantics encoder
Encapp Speaker facial appearance semantics encoder
Encemo Speaker facial emotional semantics encoder
Encp Transformer encoder

AU4, AU6, AU7, AU9, AU10, AU12, AU14, AU15, AU17, AU23,
AU24, AU25, AU26), 8 facial expression probabilities (i.e., Neutral,
Happy, Sad, Surprise, Fear, Disgust, Anger and Contempt), valence
and arousal intensities from every frame of the input speaker fa-
cial behaviour. The speaker audio semantic encoder Encaud and
the speaker appearance semantic encoder Encapp within the SBE
module are implemented as a fully-connected layer (linear layer),
while the speaker emotional semantics encoder Encemo is an RNN-
based VAE [1]. The PCSM module comprises a PSSL block and a
PWSG block. The PSSL block adopts FaceVerse [7] as the identity-
free attribute extractor to extract 3DMM coefficients from each
frame of listeners’ historical face video. The transformer encoder
Encp in PSSL consists of four transformer encoder layers, where
the number of heads in the multi-head attention block of each en-
coder layer is set to 4. Finally, a fully-connected layer is attached
at the top of the transformer encoder to output the personalised
cognitive style representation. Meanwhile, the PWSG block is a
multi-branch network with the number of branches depending on
the number of layers in the GAFRG module (i.e., the number of
layers that need to be edited). The PWSG block starts with two
fully-connected layers followed by multiple branches. Each branch
is implemented as a fully-connected layer to produce the weight
shift matrices corresponding to the layers of the GAFRG module.
The transformer decoder within the GAFRG module consists of
seven transformer decoder layers, where the number of heads in
the multi-head attention block of each decoder layer is also set to
4. The cross-attention operation in each decoder layer takes the
concatenation of the speaker audio behavioural semantics, facial
appearance semantics and facial emotional semantics encoded by
the SBE module as the key and value, which is considered as a
condition to guide the reverse (denoising) process for appropriate
facial reaction generation. Unless specifically noted, the three types
of speaker behavioural semantics are used by default. We employ
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Table 3: Notations of variables - Part 1

Notations Descriptions

𝐵𝑠 A speaker behaviour
𝐵𝑠[1:𝑡−𝑤 ] The speaker behaviour expressed at the time

interval [1 : 𝑡 −𝑤]
𝐴𝑠
[1:𝑡−𝑤 ] The speaker audio behaviour expressed at

the time interval [1 : 𝑡 −𝑤]
𝐹𝑠[1:𝑡−𝑤 ] The speaker facial behaviour expressed at

the time interval [1 : 𝑡 −𝑤]
𝑅𝑙 (𝑚) The𝑚-th generated AFR for the 𝑙-th listener

in response to the speaker behaviour 𝐵𝑠

𝑅𝑙[𝑡−𝑤+1:𝑡 ] (𝑚) The𝑚-th generated AFR at the time interval
[𝑡 −𝑤 + 1 : 𝑡] for the 𝑙-th listener in response
to the speaker behaviour 𝐵𝑠[1:𝑡−𝑤 ]

R𝑙[𝑡−𝑤+1:𝑡 ] A set of predicted personalised AFRs
{𝑅𝑙[𝑡−𝑤+1:𝑡 ] (1), · · · , 𝑅

𝑙
[𝑡−𝑤+1:𝑡 ] (𝑚) at the time

interval [𝑡 −𝑤 + 1 : 𝑡] for the 𝑙-th listener in
response to the speaker behaviour 𝐵𝑠[1:𝑡−𝑤 ]

R𝑙 A set of predicted personalised AFRs
{𝑅𝑙 (1), · · · , 𝑅𝑙 (𝑀)} for the 𝑙-th listener in
response to the speaker behaviour 𝐵𝑠

𝐹 𝑙
ℎ

A historical facial behaviour of the 𝑙-th
listener

𝐹 𝑙 (𝑛) The 𝑛th real AFR expressed by the 𝑙-th in
response to the speaker behaviour 𝐵𝑠

𝐹 ( [𝑡−𝑤+1:𝑡 ],𝑑 ) A noisy version of an AFR segment expressed
at the time interval [𝑡 −𝑤 + 1 : 𝑡] in response
to 𝐵𝑠[1:𝑡−𝑤 ] obtained at the 𝑑-th diffusion step

𝐹 ( [𝑡−𝑤+1:𝑡 ],0) Original clean real AFR segment expressed at
the time interval [𝑡 −𝑤 + 1 : 𝑡] in response to
𝐵𝑠[1:𝑡−𝑤 ] at the 0-th diffusion step

𝐹 ( [𝑡−𝑤+1:𝑡 ],0) Predicted original clean AFR segment
expressed at the time interval [𝑡 −𝑤 + 1 : 𝑡]
in response to 𝐵𝑠[1:𝑡−𝑤 ] in the reverse process

F𝑙 A set of real AFRs {𝐹 𝑙 (1), · · · , 𝐹 𝑙 (𝑁 )}
expressed by the 𝑙-th listener in response to
the speaker behaviour 𝐵𝑠

F A union set of real AFRs {F1 ∪ F2 ∪ · · · ∪ F𝐿}
expressed by 𝐿 listeners in response to the 𝐵𝑠

𝑝𝑙 Personalised cognitive style of the 𝑙-th
listener

𝑝𝑙 (𝐹 𝑙 (𝑛)) The personalised cognitive style inferred from
the 𝑛-th facial reaction 𝐹 𝑙 (𝑛) expressed
by the 𝑙-th listener

learnable positional embeddings to maintain the positional infor-
mation within the transformer decoder. Then, a fully-connected
mapping layer is finally employed after the transformer decoder to
map the latent representations to facial reactions.

Training details: The first training stage individually trains
the GAFRG and PSSL, where the maximum training epochs for

Table 4: Notations of variables - Part 2

Notations Descriptions

Z A latent space
𝜓 𝑙
ℎ

Identity-free facial behaviour attributes
extracted from the historical facial behaviour
of the 𝑙-th listener

𝐸𝑝 The encoded embedding of𝜓 𝑙
ℎ

𝐸aud[1:𝑡−𝑤 ] MFCC features of the the speaker audio behaviour
𝐴𝑠
[1:𝑡−𝑤 ]

𝐸aud[1:𝑡−𝑤 ] Speaker audio behavioural semantics at the time
interval [1 : 𝑡 −𝑤]

𝐸
app
[1:𝑡−𝑤 ] 3DMM coefficients extracted from the speaker

facial behaviour 𝐹𝑠[1:𝑡−𝑤 ]
𝐸
app
[1:𝑡−𝑤 ] Speaker facial appearance semantics at the time

interval [1 : 𝑡 −𝑤]
𝐸emo
[1:𝑡−𝑤 ] Facial emotional representations of the speaker

facial behaviour 𝐹𝑠[1:𝑡−𝑤 ]
𝐸emo
[1:𝑡−𝑤 ] Speaker facial emotional semantics at the time

interval [1 : 𝑡 −𝑤]
𝑑 The 𝑑-th step in the forward diffusion process
𝜖𝜃 Predicted noise added in the forward diffusion

process
𝑐 Conditions of the diffusion model
𝜃 The weights of GAFRG
Δ𝜃𝑙 Personalised weight shifts for the 𝑙-th listener
𝜃𝑙 Personalised weights for the 𝑙-th listener
𝑊𝑘 The weight matrix of 𝑘-th layer GAFRG𝑘

Δ𝑊 𝑙
𝑘

Personalised weight shift applied to the 𝑘-th
layer GAFRG𝑘 in the GAFRG for the 𝑙-th

𝑧𝑙
𝑘

The output of the target layer GAFRG𝜃𝑙

𝑘

𝑏𝑘 the biases at the target layer GAFRG𝜃𝑙

𝑘

Table 5: Notations of loss functions

Loss Descriptions

L1 MSE loss for training the GAFRG and PWSG
L2 Contrastive loss for training the PSSL

both GAFRG and PSSL are set to 500 and 50, respectively. During
GAFRG training, the batch size is set to 4 (speaker behaviors). To
generate generic appropriate facial reactions, we randomly select 𝑛
real AFRs that can be expressed by various listeners in response to
each speaker behavior, where 𝑛 is empirically set to 10. If an input
speaker behavior is associated with fewer than 10 available real
AFRs in the training set, we randomly replicate the provided real
AFRs until the total reaches 10. We set the batch size to 3 (speaker
behaviours) to train PSSL which models personalised cognitive
style. Differently, for each speaker behaviours, all of its correspond-
ing real AFRs are used in the training. The parameters of GAFRG
and PSSL are optimised by two separate AdamW optimiser [3] with
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an initial learning rate of 10−4 and weight decay of 10−4 using a
cosine-annealing schedule. The temperature parameter 𝜏 in the con-
trastive loss [2] for training PSSL is set to 0.07. In the experiments,
unless specifically noted, classifier-free guidance which enhances
the balance between the quality and diversity of the generated facial
reactions is employed in GAFRG’s training by default. The second
training stage trains the PWSG block with the pre-trained GAFRG.
In particular, the PSSL block is kept frozen at this stage, while the
weights of the GAFRG are only updated (edited) by the PWSG block
in the forward propagation process. The SGD optimiser with an
initial learning rate of 10−3, weight decay of 10−4 and momentum
of 0.9 is employed to optimise the weights of the PWSG block. The
batch size is set to 1 (speaker audio-visual behaviour). The maxi-
mum number of training epochs is set to 100. The default length of
the listener’s historical facial behaviour used for personalised cog-
nitive style modelling is 30 seconds. All experiments are conducted
on Nvidia A100 GPUs using PyTorch.

3 Influence of different speaker behavioural
modalities

Table 6 evaluates the importance of different speaker behavioural
semantics contributing to multiple diverse and appropriate facial
reaction generation. It is worth noting that the results are obtained
by the GAFRG without weight editing. The best performance over
the appropriateness of the generated facial reactions in terms of
correlations with the real AFRs is achieved when all of speaker
audio, appearance and facial emotional behavioural semantics are
considered, as indicated by the highest FRCorr (0.35 and 0.31) on the
MAFRG and PMAFRG tasks. Merely considering the speaker audio
semantics leads to a larger DTW distance (FRdist) between the gen-
erated facial reactions and real AFRs, indicated by the largest FRdist
values on both MAFRG and PMAFRG tasks. In contrast, speaker
facial behavioural semantics (i.e., speaker facial appearance seman-
tics and facial emotional semantics) are more reliable for predicting
facial reactions that have a lower distance to real AFRs. The results
reveal that considering multi-modalities of the speaker behaviour
helps to generate more appropriate facial reactions in response
to each speaker behaviour. In addition, multi-modalities help to
improve the diversity among multiple generated facial reactions in
response to the same speaker behaviour, as indicated by the highest
FRDiv.

4 Results achieved by directly generating
personalised weights for the GAFRG and
generating personalised weight shifts for
editing a pre-trained GAFRG

Table 7 compares the performance achieved by directly generating
personalised weights (weight generation) and personalised weight
shifts (weight editing) for producing a personalised instance of
GAFRG module. It can be observed that the personalised instance
of GAFRG obtained by weight editing outperforms the other way
over appropriateness (FRCorr and FRdist), diversity (FRDiv, FRDvs
and FRVar) and synchrony (FRSyn). The reason is that directly
generating personalised weights focuses more on the personalised

aspects of facial reaction generation. In contrast, editing a pre-
trained GAFRG allows to take into account both of personalised
cognitive processes of the target listener and the commonly shared
cognitive processes among different listeners. The superior per-
formance achieved by weight editing indicates the importance of
pre-training a GAFRG in facilitating personalised facial reaction
generation.

5 Results achieved by predicting the added
noise and predicting the original clean facial
reactions in the reverse (denoising) process

Table 8 compares the performance between predicting the added
noise and predicting original clean facial reaction segments by
GAFRG𝜃𝑙 in the reverse (denoising) process to generate facial re-
actions. As reported, predicting the original clean facial reaction
segments enables the GAFRG𝜃𝑙 to generate more appropriate facial
reactions in response to each speaker behaviour on both MAFRG
and PMAFRG tasks (higher correlations and lower distances to
the real AFRs). In contrast, predicting noise to be removed allows
the GAFRG𝜃𝑙 to generate more diverse and synchronised facial
reactions in response to speaker behaviours.

6 Influence of the classier-free guidance in
model training

Table 9 evaluates the importance of the employment of classifier-
free guidance in the training of GAFRG and GAFRG𝜃𝑙 in multiple
diverse and appropriate facial reaction generation. The comparison
in Table 9 shows that adding classifier-free guidance generally helps
to generate facial reactions with significantly higher correlations to
real AFRs, but it slightly worsens distances and the synchrony (mea-
sured by FRSyn), with a mixed impact on different diversity metrics
(FRDiv, FRDvs and FRVar). For example, the diversity among mul-
tiple facial reactions generated in response to the same speaker
behaviour (measured by FRDiv) is decreased, while the diversity
among facial reactions generated for different speaker behaviours
(measured by FRDvs) is improved. We

7 Statistical Difference Analysis
We conducted a two-tailed test with 95% confidence to compare our
proposed PerFRDiff and three state-of-the-art MAFRG approaches
on both MAFRG and PMAFRG tasks. The comparative results are
reported in Table 10. It can be observed that PerFRDiff significantly
outperforms the compared approaches in generating facial reac-
tions that are highly correlated to the real AFRs on both MAFRG
and PMAFRG tasks. In addition, the facial reactions generated by
the PerFRDiff are significantly more diverse and realistic than those
generated by the compared approaches. In contrast, the facial reac-
tions generated by REGNN and Trans-VAE are significantly more
synchronised with the speaker behaviours compared to facial reac-
tions generated by PerFRDiff.

8 Model Complexity Analysis
The intricacies of PerFRDiff are clearly revealed through multiple
metrics that capture its performance and the computational effort
it requires, as shown in Table. 11. For inference purposes, it handles
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Table 6: Influence of different speaker behavioural modalities.

Behavioural semantics FRCorr ↑ FRdist ↓ FRDiv ↑ FRDvs ↑ FRVar ↑ FRRea ↓ FRSyn ↓
Encapp Encemo Encaud MAFRG PMAFRG MAFRG PMAFRG (×10−2)

✓ 0.32 0.28 109.99 112.18 15.39 25.63 10.79 47.41 45.34
✓ 0.21 0.16 103.33 104.51 3.39 6.19 2.54 56.51 45.32

✓ 0.32 0.28 171.47 174.71 0.01 39.24 11.10 48.68 45.05
✓ ✓ 0.33 0.29 158.31 160.65 0.01 32.39 11.03 46.44 45.40

✓ ✓ 0.34 0.30 105.34 108.10 15.75 26.78 10.33 48.92 45.80
✓ ✓ 0.32 0.27 101.13 109.87 16.31 26.06 10.21 49.32 45.52

✓ ✓ ✓ 0.35 0.31 105.57 107.46 17.14 23.46 9.38 45.94 45.41

Table 7: Results achieved by directly generating personalised weights for the GAFRG module and generating personalised
weight shifts for editing a pre-trained GAFRG module in personalised facial reaction generation.

Method FRCorr ↑ FRdist ↓ FRDiv ↑ FRDvs ↑ FRVar ↑ FRRea ↓ FRSyn ↓
MAFRG PMAFRG MAFRG PMAFRG (×10−2)

Weight generation 0.36 0.32 97.28 100.48 8.44 13.95 5.44 46.89 45.31

Weight editing 0.38 0.36 94.72 98.43 13.68 21.91 8.79 47.62 45.28

Table 8: Results achieved by predicting the added noise and predicting the original clean facial reactions in the reverse (denoising)
process.

Prediction FRCorr ↑ FRdist ↓ FRDiv ↑ FRDvs ↑ FRVar ↑ FRRea ↓ FRSyn ↓
MAFRG PMAFRG MAFRG PMAFRG (×10−2)

Added noise 0.36 0.31 110.24 112.84 18.63 27.12 10.84 47.83 45.06
Facial reaction 0.38 0.36 94.72 98.43 13.68 21.91 8.79 47.62 45.28

Table 9: Results achieved by the PerFRDiff with/without classifier-free guidance.

Setting FRCorr ↑ FRdist ↓ FRDiv ↑ FRDvs ↑ FRVar ↑ FRRea ↓ FRSyn ↓
MAFRG PMAFRG MAFRG PMAFRG (×10−2)

𝑤/𝑜 Classifier-free guidance 0.31 0.27 93.88 96.27 17.93 20.00 8.97 45.72 44.92
𝑤 Classifier-free guidance 0.38 0.36 94.72 98.43 13.68 21.91 8.79 47.62 45.28

Table 10: Statistical analysis (T-test with 95% confidence) results comparing our PerFRDiffwith three state-of-the-art approaches,
where different levels of statistically significant difference are indicated by * 𝑃 < 0.05, ** 𝑃 < 0.01, and *** 𝑃 < 0.001, and N.A.
indicates no statistically significant difference. + indicates that PerReactor has outperformed the comparative approach,
whereas - indicates that PerFRDiff has under-performed the comparative approach.

Comparison FRCorr FRdist FRDiv FRDvs FRVar FRRea FRSyn
MAFRG PMAFRG MAFRG PMAFRG

PerFRDiff VS. Trans-VAE [6] +(***) +(***) N.A. +(**) +(***) +(***) +(***) +(***) -(***)
PerFRDiff VS. BeLFusion [1] +(***) +(***) +(*) N.A. +(***) +(***) +(***) +(***) N.A.
PerFRDiff VS. REGNN [8] +(***) +(***) -(***) -(***) +(***) +(***) +(***) +(***) -(***)

a 30-second sample of speaker behavior and a 30-second historical
facial video of the listeners, and it outputs tailored 30-second facial

reactions all within 5 seconds. This demonstrates the model’s ca-
pability for real-time usage. Examining the details of the GARFG
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Table 11: Model complexity analysis

Metrics GAFRG PSSL PWSG

Single iteration time (s) in training 0.16 0.28 0.12
Single epoch time (s) in training 139 300 360
Inference time (s) for a 30s facial reaction 5 - -
Parameters 28.93 (M) 4.76 (M) 1.63 (B)
FLOPs 1.78 (T) 3.19 (G) 1.63 (G)

training process, it takes 0.16 seconds to complete a single iteration
and 2 minutes and 19 seconds for a full epoch. On the other hand,
the PWSG’s training involves 0.12 seconds per iteration and just 6
minutes per epoch. During PSSL training, a single iteration takes
0.28 seconds, whereas an entire epoch is completed in 5 minutes.
Structurally, the GAFRG consists of 28.929 million parameters, and
its computational load, measured in FLOPs (Floating Point Opera-
tions per Second), is 1.783T when generating ten facial reactions
(i.e., action units (AUs), facial expression probabilities, valence and
arousal intensities) of the size 10 × 750 × 25. The PSSL comprises
4.76 million parameters and its FLOPs stands at 3.185G when pro-
cessing a listener’s historical facial behaviour of size 1 × 750 × 58
(in the form of 3DMM coefficients). The PWSG comprises 1.627
billion parameters and its FLOPs stand at 1.625G when processing
a personalised cognitive style representation of the size 1 × 512 to
generate personalised weight shifts. The above computation of the
FLOPs and the number of model parameters is done by using the
PyTorch-OpCounter package2. Altogether, these features offer a
comprehensive insight into the model’s complexity.

9 Visualisation of facial reactions generated for
different speaker behaviours

Fig. 1 to 4 display facial reactions generated by different approaches
in response to different speaker behaviours. It can be clearly ob-
served that ours show more head movements and diverse facial
expressions in response to different speaker behaviours, compared
to facial reactions generated by other approaches. A video (named
’demo.mp4’) demonstrating speaker behaviours and the correspond-
ing generated facial reactions in response to the speaker behaviours
is provided in the Supplementary Materials folder.
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Figure 1: Visualisation of facial reactions generated by different approaches in response to the speaker behaviour #1, where
ours successfully captures the listener’s personalised smile style, characterised by a slight exposure of teeth during smiling.

Figure 2: Visualisation of facial reactions generated by different approaches in response to the speaker behaviour #2, where
ours clearly show more head movements in the interaction.
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Figure 3: Visualisation of facial reactions generated by different approaches in response to the speaker behaviour #3, where
ours aligns with the real AFR that the facial expressions of the listener turn to smile in response to the speaker behaviour at
the 700-th and 750-th frames.

Figure 4: Visualisation of facial reactions generated by different approaches in response to the speaker behaviour #4, where
ours shows more facial expressions in response to the speaker behaviour.


	1 Notations and Abbreviations
	2 Implementation Details
	3 Influence of different speaker behavioural modalities
	4 Results achieved by directly generating personalised weights for the GAFRG and generating personalised weight shifts for editing a pre-trained GAFRG
	5 Results achieved by predicting the added noise and predicting the original clean facial reactions in the reverse (denoising) process
	6 Influence of the classier-free guidance in model training
	7 Statistical Difference Analysis
	8 Model Complexity Analysis
	9 Visualisation of facial reactions generated for different speaker behaviours
	References

