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Abstract
Human facial reactions play crucial roles in dyadic human-human
interactions, where individuals (i.e., listeners) with varying cog-
nitive process styles may display different but appropriate facial
reactions in response to an identical behaviour expressed by their
conversational partners. While several existing facial reaction gen-
eration approaches are capable of generating multiple appropriate
facial reactions (AFRs) in response to each given human behaviour,
they fail to take human’s personalised cognitive process in AFRs
generation. In this paper, we propose the first online personalised
multiple appropriate facial reaction generation (MAFRG) approach
which learns a unique personalised cognitive style from the target
human listener’s previous facial behaviours and represents it as a
set of network weight shifts. These personalised weight shifts are
then applied to edit the weights of a pre-trained generic MAFRG
model, allowing the obtained personalisedmodel to naturally mimic
the target human listener’s cognitive process in its reasoning for
multiple AFRs generations. Experimental results show that our
approach not only largely outperformed all existing approaches in
generating more appropriate and diverse generic AFRs, but also
serves as the first reliable personalised MAFRG solution. Our code
is made available at https://github.com/xk0720/PerFRDiff.
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1 Introduction
Human facial reaction plays a crucial role in social interactions,
which conveys individuals’ (called listeners in this paper) intentions
and emotional states in response to behaviours expressed by their
conversational partners (called speakers in this paper) [30]. As a
result, the capability to promptly generate realistic and appropriate
(i.e., contextually suitable) human-style facial reactions in real-
time is essential in the development of humanoid virtual agents
[44], as it facilitates natural, engaging and empathetic interactions
between human users and digital entities, thereby enhancing the
user experience and interaction quality.

Early facial reaction generation approaches [8, 10, 26, 47] fre-
quently attempted to reproduce the paired real facial reaction (i.e.,
called the ‘GT’ real facial reaction) triggered by each target speaker
behaviour, which treats the facial reaction generation task as a
‘one-to-one mapping’ problem. However, in real-world dyadic inter-
action scenarios, the same speaker behaviour can trigger different
real facial reactions expressed by different human listeners [21],
and thus facial reaction generation is an actually ‘one-to-many map-
ping’ task [39]. For example, when facing a funny scenario, human
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Figure 1: Comparison of our PerFRDiff with existing ap-
proaches: (a) deterministic approaches which aim to repro-
duce the corresponding ‘GT’ real appropriate facial reaction
(AFR) specifically expressed by a human listener in response
to the input speaker behaviour [7, 15, 50]; (b) distribution-
based approacheswhich aim to generatemultiple generic real
AFRs from the input speaker behaviour [19, 49]; (c) person-
alised facial reaction generation approach which generates
personalised AFRs by feeding personalised factors to the pre-
trained network, enforcing the network to mimic the AFR
expressed by the target listener [20]; (d) our approach gen-
erates a set of unique weight shifts to obtain a personalised
network, naturally simulating personalised cognitive pro-
cess of the target listener for generating personalised AFRs.

listeners with extroverted personality might react with a broad
smile, while listeners with introverted personality might offer only
a slight grin. As a result, instead of reproducing the corresponding
single GT real facial reaction for each speaker behaviour, Multi-
ple Appropriate Facial Reaction Generation (MAFRG) approaches
target at generating multiple diverse facial reactions that are appro-
priate for responding to each speaker behaviour have been widely
developed in the past year [7, 15, 19, 37, 49, 50]. These approaches
either learn a distribution [7, 18, 49, 50] or a codebook [15] from
each input speaker behaviour, based on which a set of different but
appropriate facial reactions (AFRs) can be sampled.

While human listeners’ facial reactions in response to their con-
versational partners are largely depending on their personalised
cognitive processes [21, 27, 33, 36, 43], i.e., personalised cognitive
processes are shaped by their personalised cognitive styles refer-
ring to ‘consistent individual differences in ways of organising and
processing information and experience’ [22, 41], none of existing
MAFRG approaches specifically considered this crucial factor in

AFRs generation. In other words, personalised AFR generation re-
mains under-explored (Problem 1). In this sense, we draw our
attention to model personalisation which allows a network to fit
on a specific target. Specifically, existing model personalisation
approaches are mainly achieved by fine-tuning models on person-
alised data [2, 12, 12, 14, 25, 31, 33, 36, 48] or additionally taking en-
coded personalised factors as an additional input [5, 11, 32, 34, 46],
to produce personalised portrait image generation [25], talking
head [20] or lip sync video [14]. Although the latter approaches
avoid the complex and time-consuming personalised fine-tuning
for every target individual, as illustrated in Fig. 1, they treat the
encoded personalised factors as an external input to the model
for personalised feature refinement, and thus still fail to naturally
simulate human cognitive processes which are shaped by internal
factors (e.g., cognitive style [41] and personality [36]) in human
facial reaction generation (Problem 2).

In this paper, we propose the first online personalisedMAFRG ap-
proach (called PerFRDiff) which can generate multiple diverse and
appropriate facial reactions in response to each input human audio-
visual speaker behaviour, where the personalised cognitive style of
the listener is specifically considered. To address the ‘one-to-many
mapping’ problem occurred in MAFRG task, our approach starts
with training a diffusion-based Generic Appropriate Facial Reaction
Generator (GAFRG), as its denoising process naturally allows mul-
tiple different outputs (e.g., facial reactions) to be sampled based on
the same condition (e.g., the input speaker behaviour) via randomly
picked and different input Gaussian noises [6, 16, 23, 29, 29, 35], i.e.,
achieving ‘one-to-manymapping’ network via ‘one-to-one training’.
The obtained GAFRG aims to simulate generic AFRs in response to
each input speaker behaviour, simulating generic/basic cognitive
processes commonly shared by different listeners [24]. Then, a Per-
sonalised Cognitive Style Modelling (PCSM) module is proposed to
model the target listener’s personalised cognitive style from the lis-
tener’s previous facial behaviours (i.e., a short historical face video),
which is represented in the form of a set of personalised weight
shifts (addressing Problem 1). These learned personalised weight
shifts are then applied to edit pre-trained weights of the GAFRG, re-
sulting in a personalised instance defined by personalised weights.
Manipulating the weights according to the target listener alters the
fundamental way in which the GAFRG perceives the input speaker
behaviour as well as how facial reactions in the latent space are
formed and transformed throughout the network. In other words,
this strategy allows the obtained personalised instance to naturally
simulate the corresponding listener’s personalised cognitive pro-
cesses involved in facial reaction generation (addressing Problem
2). The main contributions of this paper are summarised as follows:

• We propose the first online personalised MAFRG model that
can simulate personalised cognitive processes of the target
listener for generating multiple diverse, personalised, re-
alistic and appropriate facial reactions in response to each
speaker behaviour, where diffusion style process is employed
to address the ‘one-to-many mapping’ problem occurred in
MAFRG model’s training.

• We propose to model the personalised cognitive style of the
target listener in the form of personalised weight shifts, and
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apply them to edit a pre-trained model (GAFRG) which simu-
lates commonly shared cognitive processes among different
listeners. This results in a personalised instance particularly
representing the target listener’s cognitive processes for fa-
cial reaction generation.

• Experiments show our approach largely outperforms exist-
ing state-of-the-art approaches with over two-fold appropri-
ateness (FRCorr) improvement in bothMAFRG and PMAFRG
tasks, and approximately 67%, 188% and 239% times better in
terms of diversity over FRDiv, FRDvs and FRVar, respectively.

2 Related Work
Early deterministic facial reaction generation approaches [8, 10,
26, 47] were developed to reproduce the GT real facial reaction
from each input speaker behaviour. For example, Huang et al. [9]
presented a conditional Generative Adversarial Network (GAN) to
generate facial reaction sketches conditioned on the facial expres-
sions expressed by the conversational partner, which are expected
to match the face sketches extracted from the paired GT real facial
reaction. Woo et al. [47] utilised Recurrent Neural Networks (RNNs)
to generate a multi-dimensional facial reaction signal (e.g., facial
expressions, headmotion, posture, etc.) in a real-time dyadic interac-
tion. Song et al. [33, 36] simulated each listener’s personalised cog-
nitive processes using a personalised convolutional neural network
(CNN) to reproduce the GT real facial reaction. Recently, several
approaches have been proposed to generate multiple diverse but
appropriate facial reactions in response to each speaker behaviour.
Specifically, Xu et al. [49] and Luo et al. [19] learn a distribution
(i.e., Gaussian Mixture Model (GMM) / Gaussian distribution) from
each input speaker behaviour, where multiple different AFRs in re-
sponse to the given speaker behaviour can be sampled from it. This
idea has been followed by multiple approaches [7, 50] presented
in the REACT2023 challenge [37]. For example, the BEAMER [7]
extended the Transformer-based Variational Autoencoder (VAE)
architecture provided in [37] to predict a latent AFR distribution
for each speaker behaviour. A contrastive loss between the speaker
behaviour representation and the predicted facial reaction repre-
sentation is computed to facilitate the model training. The winner
[15] of the challenge represents a finite set of real facial reactions
provided in the training set through a codebook, from which top-k
AFRs are selected for responding to the input speaker behaviour.

3 Task Definition
In dyadic interactions, Personalised Multiple Appropriate Facial Re-
action Generation (PMAFRG) task aims to learn a machine learning
(ML) model that can generate multiple (𝑀) different but appropriate
personalised facial reactions R𝑙 = {𝑅𝑙 (1), · · · , 𝑅𝑙 (𝑀))} in response
to the given speaker behaviour 𝐵𝑠 . This can be formulated as:

R𝑙 = HPMAFRG
(
𝐵𝑠 , 𝐹 𝑙

ℎ

)
, (1)

where 𝐹 𝑙
ℎ
denotes an arbitrary facial behaviour previously expressed

by the target listener 𝑙 (i.e., historical personalised facial behaviour).
Here, the generated 𝑅𝑙 ∈ R𝑙 should be similar to at least one real
AFR expressed by the target listener 𝑙 (i.e., a personalised real AFR

𝐹 𝑙 (𝑛) ∈ F𝑙 ) provided in the training set as:

𝑅𝑙 (𝑚) ≈ 𝐹 𝑙 (𝑛) ∈ F𝑙 , (2)

where F𝑙 represents a set of real facial reactions expressed by the
target listener 𝑙 in response to human behaviours that are simi-
lar to the given speaker behaviour 𝐵𝑠 . In particular, the online
PMAFRG model is expected to predict each personalised AFR
𝑅𝑙 (𝑚) in a progressive way that it predicts the current AFR seg-
ment 𝑅𝑙[𝑡−𝑤+1:𝑡 ] (𝑚) (i.e., represented by a small video segment
consisting of𝑤 frames at the time interval [𝑡 −𝑤 + 1 : 𝑡]) belong-
ing to 𝑅𝑙 (𝑚) based on the previous speaker behaviour 𝐵𝑠[1:𝑡−𝑤 ]
expressed at the time [1 : 𝑡 −𝑤] and a historical facial behaviour
𝐹 𝑙
ℎ
of the target listener as:

𝑅𝑙[𝑡−𝑤+1:𝑡 ] (𝑚) = HPMAFRG
(
𝐵𝑠[1:𝑡−𝑤 ] , 𝐹

𝑙
ℎ

)
, (3)

where𝑤 simulates the time delay due to the execution of human
cognitive processes [4, 36]. The progressively predicted facial reac-
tion segments {𝑅𝑙[1:𝑤 ] (𝑚), 𝑅𝑙[𝑤+1:2𝑤 ] (𝑚), · · ·𝑅𝑙[𝑡−𝑤+1:𝑡 ] (𝑚)} along
the time [1 : 𝑡] forms a complete facial reaction 𝑅𝑙[1:𝑡 ] (𝑚) in re-
sponse to the speaker behaviour 𝐵𝑠[1:𝑡 ] . This task is different from
the general MAFRG task defined in [39] and the general online
MAFRG task implemented in [19, 39], which only requires each
generated AFR to be similar to at least one real AFR that can be
expressed by different individuals in response to 𝐵𝑠 .

4 Methodology
Overview: Given an audio-visual speaker behaviour 𝐵𝑠[1:𝑡−𝑤 ] =
{𝐴𝑠

[1:𝑡−𝑤 ] , 𝐹
𝑠
[1:𝑡−𝑤 ] } expressed at the time interval [1 : 𝑡 − 𝑤]

(i.e., 𝐴𝑠
[1:𝑡−𝑤 ] denotes the audio speaker behaviour and 𝐹𝑠[1:𝑡−𝑤 ]

denotes the facial speaker behaviour), and an arbitrary histori-
cal facial behaviour segment 𝐹 𝑙

ℎ
(can have an arbitrary number

of frames) previously expressed by the target listener 𝑙 , the pro-
posed PerFRDiff simulates multiple listener 𝑙 ’s personalised ap-
propriate facial reactions (AFRs) based on three modules: (i) a
Speaker Behaviour Encoding (SBE) module which encodes the
facial reaction-related audio and facial behavioural semantics from
the speaker audio-visual behaviour 𝐵𝑠[1:𝑡−𝑤 ] . Specifically, the SBE
encodes three equal-size semantic embeddings from 𝐵𝑠[1:𝑡−𝑤 ] via
three separate encoders {Encaud,Encapp, and Encemo}, describing
speaker audio behavioural semantics 𝐸aud[1:𝑡−𝑤 ] , facial emotional
semantics 𝐸emo

[1:𝑡−𝑤 ] , and facial appearance semantics 𝐸app[1:𝑡−𝑤 ] as:

𝐸aud[1:𝑡−𝑤 ] = Encaud (𝐸aud[1:𝑡−𝑤 ] )

𝐸emo
[1:𝑡−𝑤 ] = Encapp (𝐸app[1:𝑡−𝑤 ] )

𝐸
app
[1:𝑡−𝑤 ] = Encemo (𝐸emo

[1:𝑡−𝑤 ] ).

(4)

To achieve this, we pre-process the input speaker facial behaviour
𝐹𝑠[1:𝑡−𝑤 ] into two sets of frame-level facial features: 3D Morphable
Model (3DMM) coefficients [45] 𝐸app[1:𝑡−𝑤 ] representing the facial
appearance, as well as facial emotional representations 𝐸emo

[1:𝑡−𝑤 ]
(i.e., action units (AUs), facial expression probabilities, valence
and arousal intensities) [18, 40]. The raw speaker audio signal
𝐴𝑠
[1:𝑡−𝑤 ] is represented by Mel-frequency Cepstral Coefficients
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Figure 2: The pipeline of the proposed PerFRDiff. At the time 𝑡 , (1) it starts with a GAFRG that takes a noise sampled from a
Gaussian distribution and the given audio-visual speaker behaviour previously expressed at the time [1, 𝑡 −𝑤] as the input, and
generate multiple generic appropriate facial reactions (AFRs) that can be expressed by different human listeners via 𝐷 steps,
where the speaker behaviour semantics are encoded from the speaker behaviour via the SBEmodule. (2) Then, the PCSMmodule
models the target listener’s personalised cognitive style 𝑝𝑙 in the form of personalised weight shifts Δ𝜃𝑙 from the listener’s
historical facial behaviour 𝐹 𝑙

ℎ
. These weight shifts Δ𝜃𝑙 are subsequently applied to define a personalised instance GAFRG𝜃𝑙 from

the GAFRG, which particularly simulates the target listener 𝑙 ’s cognitive processes in facial reaction generation. (3) Finally, the
personalised instance GAFRG𝜃𝑙 generates a set of personalised AFR segments (each contains𝑤 frames) in response to the given
speaker behaviour 𝐵𝑠[1:𝑡−𝑤 ] through a denoising process guided by the its behaviour semantics {𝐸aud[1:𝑡−𝑤 ] , 𝐸

emo
[1:𝑡−𝑤 ] , 𝐸

app
[1:𝑡−𝑤 ] }.

(MFCC) 𝐸aud[1:𝑡−𝑤 ] . Here, both Encaud and Encapp are a linear layer,
while Encemo is a pre-trained RNN-based VAE [1]; (ii) a Person-
alised Cognitive Style Modelling (PCSM) module which learns
the target listener’s personalised cognitive style 𝑝𝑙 based on the
historical facial behaviour 𝐹 𝑙

ℎ
in the form of a set of personalised

weight shifts; (iii) finally, a personalised instance GAFRG𝜃𝑙 ob-
tained by applying the personalised weight shifts to a pre-trained
Generic Appropriate Facial Reaction Generator (GAFRG)
simulates the personalised cognitive processes for the target lis-
tener 𝑙 . It promptly generates multiple diverse personalised AFRs
R𝑙[𝑡−𝑤+1:𝑡 ] = {𝑅𝑙[𝑡−𝑤+1:𝑡 ] (1), · · · , 𝑅

𝑙
[𝑡−𝑤+1:𝑡 ] (𝑚)} in response to

the given speaker behaviour at the time [𝑡 −𝑤 + 1 : 𝑡], conditioned
on the speaker behaviour semantics {𝐸aud[1:𝑡−𝑤 ] , 𝐸

emo
[1:𝑡−𝑤 ] , 𝐸

app
[1:𝑡−𝑤 ] }.

The full pipeline is also illustrated in Fig. 2.

4.1 Personalised Cognitive Style Modelling
The Personalised Cognitive Style Modelling (PCSM) module models
the target listener’s personalised cognitive processes to enable the
simulation of the target listener’s personalised cognitive processes
for generatingmore appropriate and realistic facial reactions. This is
achieved by learning a set of personalised weight shifts to represent
the target listener’s personalised cognitive style 𝑝𝑙 that shapes
the listener’s personalised cognitive processes in facial reaction
generation [4, 41]. Specifically, our PCSM module starts with a
Personalised Style Space Learning (PSSL) block which encodes

each target listener’s historical facial behaviour 𝐹 𝑙
ℎ
into a latent

space Z where the personalised cognitive styles 𝑝𝑙 is modelled as:

𝑝𝑙 = PSSL(𝐹 𝑙
ℎ
) . (5)

Then, Personalised Weight Shift Generation (PWSG) block is
introduced to represent 𝑝𝑙 in the form of a set of weight shifts Δ𝜃
to produce a personalised instance of the GARFG module.

Personalised Style Space Learning (PSSL): The PCSMmodule
is built on the hypothesis that the personalised cognitive style 𝑝𝑙

of the listener 𝑙 is consistent across different facial behaviours F𝑙 =
{𝐹 𝑙 (1), 𝐹 𝑙 (2), · · · , 𝐹 𝑙 (𝑁 )} expressed by this listener, but different
from the personalised cognitive style of other listeners [22], i.e., cog-
nitive styles𝑝1, · · · , 𝑝𝐿 reflected by facial reactions 𝐹 1 (𝑛), · · · , 𝐹𝐿 (𝑛)
expressed by different listeners for responding to the same speaker
behaviour 𝐵𝑠 (𝑛) should be different. This can be defined as:

𝑝𝑙 (𝐹 𝑙 (1)) ≈ 𝑝𝑙 (𝐹 𝑙 (2)) ≈ · · · ≈ 𝑝𝑙 (𝐹 𝑙 (𝑁 )),∀𝑙 ∈ {1, 2, · · · , 𝐿}

𝑝1 (𝐹 1 (𝑛)) ≠ 𝑝2 (𝐹 2 (𝑛)) ≠ · · · ≠ 𝑝𝐿 (𝐹𝐿 (𝑛)),∀𝑛 ∈ {1, 2, · · · , 𝑁 },
(6)

where 𝑝𝑙 (𝐹 𝑙 (𝑛)) denotes the cognitive style reflected by the facial
reaction 𝐹 𝑙 (𝑛). To obtain this personalised cognitive style from a
target listener’s historical facial behaviour video 𝐹 𝑙

ℎ
, our PSSL is

learned to map all facial behaviours to a latent space Z, where the
latent representations extracted from facial behaviours expressed
by the same listener are pulled together while latent representations
extracted from facial behaviours belonging to different listeners are
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pushed apart, i.e., latent representations inZ should meet Eqa. 6.
More details for training our PSSL block are explained in Sec. 4.3. To
avoid this process being influenced by identities of listeners, which
are also consistent in different face videos of the same listener but
different across various listeners, our PSSL first extracts a set of
identity-free facial behaviour attributes𝜓 𝑙

ℎ
(e.g. 3DMM and Action

Units (AUs)) from each frame of the given historical face video 𝐹 𝑙
ℎ

(as shown in Fig. 3), aiming to model the personalised cognitive
style underlying the facial behaviours regardless of the listener’s
identity. Then, the 𝜓 𝑙

ℎ
is encoded as an embedding 𝐸𝑝 through a

Transformer encoderEncp [42] to capture long-range dependencies
within the given sequential behaviour, as the target personalised
cognitive style 𝑝𝑙 should be consistent across the entire video 𝐹 𝑙

ℎ
[22]. Finally, the obtained 𝐸𝑝 is projected into the target latent space
Z through a projection head (i.e., a linear layer) as the required 𝑝𝑙 .

Personalised Weight Shifts Generation (PWSG): Based on
the personalised cognitive style 𝑝𝑙 , the PWSG block simulates the
corresponding listener’s cognitive processes involved in the facial
reaction generation by learning a set of unique and personalised
weight shifts Δ𝜃𝑙 from 𝑝𝑙 via a multi-branch network as:

Δ𝜃𝑙 = PWSG(𝑝𝑙 ) . (7)

These personalised weight shifts are then applied to transform the
pre-trained generic appropriate facial reaction generator (GAFRG)
as a personalised instance (i.e., a personalised appropriate facial
reaction generator) GAFRG𝜃𝑙 representing the personalised facial
reaction cognitive process of the listener 𝑙 . Here, each branch of the
PWSG network generates a set of weight shifts Δ𝑊 𝑙

𝑘
to personalise

the 𝑘th layer GAFRG𝑘 in the GAFRG.

Figure 3: The architecture of PCSMmodule consisting of PSSL
and PWSG blocks for personalised cognitive style modelling.

4.2 Personalised Appropriate Facial Reaction
Generation

The PerFRDiff aims to naturally simulate the personalised cognitive
process of the target listener in PMAFRG task without requiring
time-consuming personalised fine-tuning. Specifically, it first pre-
trains a generic Appropriate Facial Reaction Generator (GAFRG)
that is capable of generating multiple generic AFRs in response to
each input speaker behaviour, simulating generic cognitive pro-
cesses commonly shared by different listeners. Then, the obtained
𝑝𝑙 representing the target listener 𝑙 ’s personalised cognitive style is
applied to edit GAFRG’s weights, producing a personalised instance

GAFRG𝜃𝑙 which particularly simulates the listener 𝑙 ’s personalised
cognitive processes in this listener’s facial reaction generation.

Generic Appropriate Facial Reaction Generator: Separately
training/fine-tuning a personalised facial reaction generator for
each listener is challenging due to the need for not only a large
amount of interaction data expressed by every target listener but
also substantial computational costs. Since there are commonly
shared facial reactions that can be expressed by different human
listeners in response to the same speaker behaviour (i.e., some
facial reaction styles are commonly shared by various human lis-
teners), we first learn a GAFRG aiming to generate generic AFRs
that can be expressed by different listeners, simulating the com-
monly shared generic cognitive processes involved in facial reac-
tion generation. To address the ‘one-to-many mapping’ problem
occurring in MAFRG models’ training, the employed GAFRG is
designed as a transformer-based diffusion model [42] which re-
formulates the ‘one-to-many mapping’ problem as a ‘one-to-one
mapping’ task by denoising each noisy real AFR (ground-truth pro-
vided in the training set) degraded by a random Gaussian noise
to itself (a real AFR) expressed by a real listener in response to
the speaker behaviour 𝐵𝑠[1:𝑡−𝑤 ] during training. This process com-
prises two main steps: (i) a forward diffusion process where small
portions of Gaussian noise are progressively added to a real AFR seg-
ment 𝐹 ( [𝑡−𝑤+1:𝑡 ],0) in 𝐷 steps, resulting in a noisy AFR segment
𝐹 ( [𝑡−𝑤+1:𝑡 ],𝐷 ) at the final step 𝐷 ; and (ii) a reverse (denoising)
process where the GAFRG denoises 𝐹 ( [𝑡−𝑤+1:𝑡 ],𝐷 ) step-by-step to
recover the original AFR segment 𝐹 ( [𝑡−𝑤+1:𝑡 ],0) expressed at the
time [𝑡 − 𝑤 + 1 : 𝑡]. At each reverse step, given the speaker be-
haviour 𝐵𝑠[1:𝑡−𝑤 ] and a noisy version of AFR segment 𝐹 ( [𝑡−𝑤+1:𝑡 ],𝑑 )
obtained at the 𝑑-th diffusion step, the GAFRG learns to predict
the added noise 𝜖𝜃 (𝐹 ( [𝑡−𝑤+1:𝑡 ],𝑑 ) , 𝐵

𝑠
[1:𝑡−𝑤 ] , 𝑑) at the 𝑑-th diffu-

sion step and removes it from 𝐹 ( [𝑡−𝑤+1:𝑡 ],𝑑 ) , reversely obtaining
𝐹 ( [𝑡−𝑤+1:𝑡 ],𝑑−1) . The reverse process is guided by the input speaker
behaviour 𝐵𝑠[1:𝑡−𝑤 ] expressed at the time [1 : 𝑡 − 𝑤] as the con-
dition (i.e., as the key and value), according to which the latent
representation of the predicted original AFRs (i.e., as the query)
is modified via cross-attention operations. This process encourages
the GAFRG to understand the relationships between the speaker be-
haviour 𝐵𝑠[1:𝑡−𝑤 ] and its corresponding multiple AFRs F[𝑡−𝑤+1:𝑡 ] =
{𝐹 [𝑡−𝑤+1:𝑡 ] (1), 𝐹 [𝑡−𝑤+1:𝑡 ] (2), · · · , 𝐹 [𝑡−𝑤+1:𝑡 ] (𝑁 )} (i.e., the distri-
bution of them). As a result, the well-trained GAFRG can generate
multiple AFRs R𝑡−𝑤+1:𝑡 from sampled Gaussian noises conditioned
on the input speaker behaviour 𝐵𝑠[1:𝑡−𝑤 ] at the inference stage.

Simulating personalised cognitive process for personalised
AFRs generation: To consider personalised cognitive style of the
target listener 𝑙 in generating multiple personalised AFRs R𝑙 =

{𝑅𝑙[1:𝑡 ] (1), · · · , 𝑅
𝑙
[1:𝑡 ] (𝑚)} in response to the speaker behaviour

𝐵𝑠[1:𝑡 ] , we apply the personalised weight shifts Δ𝜃𝑙 learned from 𝑝𝑙

to edit the weights 𝜃 of the GAFRG, achieving a personalised in-
stance GAFRG𝜃𝑙 of GAFRG. The personalised weights of GAFRG𝜃𝑙

fundamentally determines its way to interpret the input speaker
behaviours and forms AFRs throughout the network. Let 𝜃 be the
weights of the pre-trained GAFRG, this process is formulated as:

𝜃𝑙 = 𝜃 + Δ𝜃𝑙 , (8)
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where 𝜃𝑙 denotes the weights of a personalised instance of GAFRG
representing the listener 𝑙 ’s cognitive process. Personalised facial re-
action segments R𝑙[𝑡−𝑤+1:𝑡 ] = {𝑅𝑙[𝑡−𝑤+1:𝑡 ] (1), · · · , 𝑅

𝑙
[𝑡−𝑤+1:𝑡 ] (𝑚)}

expressed at the time 𝑡 can be consequently predicted by:

R𝑙[𝑡−𝑤+1:𝑡 ] = GAFRG𝜃𝑙 (𝐵𝑠[1:𝑡−𝑤 ] ,R
𝑙
[1:𝑡−𝑤 ] ), (9)

where R𝑙[1:𝑡−𝑤 ] denotes the previously predicted facial reaction
sequence at the time [1 : 𝑡 −𝑤].

As a result, consecutively predicted personalised facial reac-
tion segments {𝑅𝑙[1:𝑤 ] (𝑚), 𝑅𝑙[𝑤+1:2𝑤 ] (𝑚), · · · , 𝑅𝑙[𝑇−𝑤+1:𝑇 ] (𝑚)} fi-

nally form a complete facial reaction 𝑅𝑙[1:𝑇 ] (𝑚) consisting of 𝑇
frames in response to a speaker behaviour 𝐵𝑠[1:𝑇 ] . This way, multi-
ple personalised AFRs in response to a speaker behaviour 𝐵𝑠[1:𝑇 ]
can be obtained by repeating the consecutive prediction process.

4.3 Training Strategy and Loss Functions
Our PerFRDiff is trained via a two-stage strategy, where the first
stage includes GAFRG and PSSL‘s training, while the second stage
focuses on training the PWSG block.

Pre-training GAFRG: The GAFRG is jointly trained with the
SBE module by performing a reverse diffusion process where the
GAFRG denoises a noisy facial reaction 𝐹 ( [𝑡−𝑤+1:𝑡 ],𝑑 ) to recover
the original clean real AFR 𝐹 ( [𝑡−𝑤+1:𝑡 ],0) triggered by the speaker
behaviour 𝐵𝑠[1:𝑡−𝑤 ] expressed at the time [1 : 𝑡 − 𝑤], which is
supervised by optimising an MSE loss as:

L1 =EF( [𝑡−𝑤+1:𝑡 ],0) ,𝜖
[
∥𝐹 ( [𝑡−𝑤+1:𝑡 ],0)−

𝐹 ( [𝑡−𝑤+1:𝑡 ],0) (𝐹 ( [𝑡−𝑤+1:𝑡 ],𝑑 ) , 𝑐, 𝑑)∥2] , (10)

where 𝐹 ( [𝑡−𝑤+1:𝑡 ],0) (𝐹 ( [𝑡−𝑤+1:𝑡 ],𝑑 ) , 𝑐, 𝑑) denotes the predicted orig-
inal clean AFR based on the 𝐹 ( [𝑡−𝑤+1:𝑡 ],𝑑 ) in the reverse process,
and 𝑐 denotes the conditions including the speaker behaviour𝐵𝑠[1:𝑡−𝑤 ]
and the previously predicted facial reaction sequence R𝑙[1:𝑡−𝑤 ] .

Training PSSL: Let F𝑙 be a set of real AFRs expressed by the
𝑙-th listener in response to the speaker behaviour 𝐵𝑠 ; F = {F1 ∪
F2∪· · ·∪F𝐿} be a union set of𝑋 real AFRs expressed by 𝐿 different
listeners in response to 𝐵𝑠 ; 𝑖 ∈ 𝐼 ≡ {1 . . . 𝑋 } be the index of a real
AFR in F; 𝐺 (𝑖) ≡ 𝐼\{𝑖} be the set of indices excluding 𝑖; and 𝑄 (𝑖)
denotes the set of indices of AFRs belonging to the same listener as
the 𝑖-th AFR and 𝑖 ∉ 𝑄 (𝑖). The training process of the PSSL block
is achieved by minimising a contrastive loss [13] as:

L2 =
∑︁
𝑖∈𝐼

−1
|𝑄 (𝑖) |

∑︁
𝑞∈𝑄 (𝑖 )

log
exp (𝑝 (𝑖) · 𝑝 (𝑞)/𝜏)∑

𝑔∈𝐺 (𝑖 ) exp (𝑝 (𝑖) · 𝑝 (𝑔)/𝜏) , (11)

where 𝑝 (𝑖) denotes the personalised cognitive style derived from
the 𝑖-th AFR in F, |𝑄 (𝑖) | denotes the cardinality of 𝑄 (𝑖), and 𝜏 is a
temperature parameter. This loss maximises the similarity between
each pair of the personalised cognitive styles (𝑝 (𝑖), 𝑝 (𝑞)) modelled
from real AFRs belonging to the same listener.

Training PWSG: In this stage, we integrate the PSSL and PWSG
blocks into the GAFRG, then freeze the well-trained PSSL block
and GAFRG. Subsequently, we employ the loss defined in Equation
10 to optimise the PWSG block. Let𝑊𝑘 ∈ 𝜃 be the weight matrix
of the 𝑘-th layer GAFRG𝑘 to be edited in the GAFRG and Δ𝑊 𝑙

𝑘
be

the personalised weight shifts generated by the PWSG block. The
forward propagation of the updated layer GAFRG𝜃𝑙

𝑘
is:

𝑧𝑙
𝑘
= 𝜎

(
(𝑊𝑘 + Δ𝑊 𝑙

𝑘
)𝑧𝑙
𝑘−1 + 𝑏𝑘

)
, (12)

where 𝑧𝑙
𝑘
denotes the output of the target layer GAFRG𝜃𝑙

𝑘
; 𝑏𝑘 de-

notes the biases at the target layer GAFRG𝜃𝑙

𝑘
, and 𝜎 is an activation

function. Correspondingly, the gradient of the loss L1 with respect
to the personalised weight shift Δ𝑊 𝑙

𝑘
generated by the PWSG block

is computed using the rule chain as:

𝜕L1

𝜕(Δ𝑊 𝑙
𝑘
)
=

𝜕L1

𝜕𝑧𝑙
𝑘

·
𝜕𝑧𝑙

𝑘

𝜕((𝑊𝑘 + Δ𝑊 𝑙
𝑘
)𝑧𝑙
𝑘−1 + 𝑏𝑘 )

·
𝜕((𝑊𝑘 + Δ𝑊 𝑙

𝑘
)𝑧𝑙
𝑘−1 + 𝑏𝑘 )

𝜕(Δ𝑊 𝑙
𝑘
)

= (𝑧𝑙
𝑘−1)

𝑇 ·
(
𝜕L1

𝜕𝑧𝑙
𝑘

· 𝜎′
)
,

(13)
where (𝑧𝑙

𝑘−1)
𝑇 denotes the transpose of 𝑧𝑙

𝑘−1, and 𝜎
′ denotes the

derivative of the activation function 𝜎 . The gradient 𝜕L1
𝜕 (Δ𝑊 𝑙

𝑘
) can

be back-propagated through the PWSG block for optimisation.

4.4 Experimental Settings
Dataset: Our PerFRDiff is evaluated on a publicly accessible audio-
visual dyadic interaction dataset provided by REACT2024 challenge
[38] 1. It contains 2962 pairs of human speaker-listener dyadic
interaction clips (including 1593 training pairs, 562 validation pairs
and 806 test pairs) recorded under various contexts, with each clip
lasting for 30 seconds. These clips are originally recorded by two
datasets: NoXI [3] and RECOLA [28].
Implementation Details: GAFRG and PSSL are trained with the
AdamW [17] optimizer with the initial learning rate of 0.0001, while
the SGD optimizer with the learning rate of 0.001 is employed to
train the PWSG. More details are in the Supplementary Material.
Metrics: Following previous challenges [37, 38], we evaluate four
aspects of the generated AFRs, including: appropriateness (mea-
sured by FRCorr and FRdist), diversity (i.e., FRDiv, FRDvs and
FRVar, where FRDiv measures the diversity of multiple generated
AFRs in response to the same speaker behaviour), realism (FRRea)
and synchrony (FRSyn). Please refer to [39] for more details.

4.5 Comparison with existing approaches
Table 1 compares our PerFRDiff with existing MAFRG approaches
on both MAFRG task and PMAFRG task. It can be observed that
our PerFRDiff demonstrates large advantages over all existing ap-
proaches in generating both generic AFRs (i.e., MAFRG task) as
well as personalised AFRs (i.e., PMAFRG task), which are evidenced
by the highest FRCorr results (0.36 and 0.38), i.e., it brings 100%
and 110% FRCorr improvements over previous state-of-the-art ap-
proaches (i.e., REGNN and Unifarn) on the MAFRG and PMAFRG
tasks. Compared to other approaches, the PerFRDiff also shows
significant improvements on all three diversity and realism metrics:
FRDiv, FRDvs, and FRVar (more than 67%, 188%, and 239%, respec-
tively). This suggests that our PerFRDiff is capable of generating

1https://sites.google.com/cam.ac.uk/react2024

https://sites.google.com/cam.ac.uk/react2024
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Table 1: Quantitative comparison between our PerFRDiff and existing MAFRG methods on REACT 2024 test set for both
MAFRG and PMAFRG tasks. The best result achieved for each metric is marked in bold.

Method
Appropriateness Diversity (×10−2) Realism Synchrony

FRCorr ↑ FRdist ↓ FRDiv ↑ FRDvs ↑ FRVar ↑ FRRea ↓ FRSyn ↓
MAFRG PMAFRG MAFRG PMAFRG

Chance level 0.05 0.01 237.21 194.02 16.67 8.33 16.67 - 43.84

Trans-VAE [37] 0.09 0.08 98.31 105.27 3.04 3.16 0.37 67.74 44.86
REGNN [49] 0.19 0.17 84.54 91.33 0.07 3.42 0.61 - 41.35
Unifarn [15] 0.19 0.15 98.51 103.21 8.19 7.60 2.59 - 46.11
Beamer [7] 0.11 0.10 97.33 105.09 5.08 3.74 1.96 - 48.12
FRDiff [50] 0.14 0.13 91.05 98.28 6.90 4.43 1.08 69.37 47.66
BeLFusion [1] 0.12 0.11 94.16 98.95 3.60 3.84 2.49 78.96 49.00

PerFRDiff (Ours) 0.38 0.36 94.72 98.43 13.68 21.91 8.79 47.62 45.28

Table 2: Ablation study results on different modalities.

Modality FRCorr ↑ FRdist ↓ FRDiv ↑
Audio Visual MAFRG PMAFRG MAFRG PMAFRG

✓ 0.32 0.28 171.47 174.71 0.01
✓ 0.32 0.27 101.13 109.87 16.31

✓ ✓ 0.35 0.31 105.57 107.46 17.14

diverse but appropriate and realistic facial reactions in re-
sponse to not only the same speaker behaviour (indicated by
the highest FRDiv) but also different speaker behaviours (in-
dicated by the highest FRDvs). It should be noted that the reason
behind consistent superior appropriateness performance achieved
by the same systems on the MAFRG task over the PMAFRG task is
that given an input speaker behaviour, its corresponding generic
real AFRs (labels for MAFRG task) include not only its personalised
real AFRs (labels for PMAFRG task) but also real AFRs expressed
by other listeners. Fig. 4 further visualizes the AFRs generated by
our approach and competitors.

4.6 Ablation Studies
This section conducts a series of ablation studies to evaluate various
aspects of our PerFRDiff. Additional analyses, including statistical
difference analysis, are provided in the Supplementary Material.

Contributions of different modalities: Table 2 evaluates the
importance of speaker audio and visual behaviours in generating
AFRs. It can be observed that using both audio and visual modali-
ties facilitates more appropriate and diverse AFRs generation, as
indicated by the highest FRCorr and lowest FRdist. While both
speaker audio and facial behaviours are important for generating
AFRs, excluding speaker facial behaviour results in a larger DTW
distance between generated facial reactions and real AFRs as well
as very low diversity among generated facial reactions. Thus, we
conclude that: (1) facial behaviours are more reliable for predicting
AFRs; (2) while non-verbal audio behaviour is also informative for
AFRs generation (i.e., decent FRCorr performance), it cannot trigger
diverse facial reactions; (3) speaker audio behaviour provide com-
plementary cues and more details to speaker facial behaviour for

Table 3: Results achieved for different GAFRG settings, where
‘Input 𝑝𝑙 ’ denotes feeding personalised representation to the
GAFRG network (Solution 3 in Fig. 1).

Paradigm FRCorr ↑ FRdist ↓
MAFRG PMAFRG MAFRG PMAFRG

GAFRG 0.35 0.31 105.57 107.46
GAFRG (Input 𝑝𝑙 ) 0.35 0.31 100.59 103.27

GAFRG𝜃𝑙 (Weight editing) 0.38 0.36 94.72 98.43

Table 4: Results of weight rewriting for different layers.

Components FRCorr (×10−2) ↑ FRdist ↓
Self-attn Cross-attn Feed-forward Mapping MAFRG PMAFRG MAFRG PMAFRG

✓ 33.56 31.90 106.40 110.92
✓ 35.79 33.20 99.04 101.59

✓ 35.16 32.50 104.62 107.19
✓ 37.16 33.52 95.05 99.98

✓ ✓ 36.01 33.35 100.22 103.07
✓ ✓ 35.82 33.12 95.97 99.51

✓ ✓ 38.45 35.84 94.72 98.43
✓ ✓ ✓ ✓ 38.01 35.35 94.49 97.16

AFRs generation, and thus multi-modalities enables our PerFRDiff
to generate more appropriate facial reactions in response to it.

Effectiveness of personalised cognitive style modelling:
Table 3 shows that the best appropriateness results on both tasks
are achieved by our personalised instance GAFRG𝜃𝑙 that naturally
simulates the personalised cognitive processes (through weight
editing) of the target listener involved in facial reactions generation.
This validates our assumption that additionally considering indi-
vidual differences is crucial in generating more appropriate facial
reactions (high correlations and fewer distances with correspond-
ing real AFRs). More importantly, a common strategy which treats
personalised factors as an external input to the MAFRG (Solution
3 in Fig. 1) shows much less effectiveness than our strategy, fur-
ther validating our novel cognitive process simulation strategy is
suitable for MAFRG and PMAFRG tasks.

Weight editing of different layers: Table 4 reports the in-
fluences caused by editing the weight matrices of different layers
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Figure 4: (a) Visualisation of facial reactions generated by different approaches, where ours clearly show more head movements
and diverse facial expressions in response to the speaker behaviour; (b) t-SNE visualisation of personalised cognitive styles
modelled from varying lengths/contents of listeners’ historical facial videos by our PSSL, where personalised cognitive styles
modelled from facial videos of varying lengths/contents belonging to the same listener are well clustered together, but separated
from other listeners’ personalised cognitive styles.

Table 5: Results achieved for varying video lengths.

Length FRCorr ↑ FRdist ↓ FRDiv ↑
MAFRG PMAFRG MAFRG PMAFRG

10s 0.39 0.36 97.72 99.95 13.76
20s 0.38 0.35 95.33 98.04 13.43
30s 0.38 0.36 94.72 98.43 13.68

within the GAFRG. Specifically, the GAFRG layers to be edited in-
clude the self-attention (self-attn) block, cross-attention (cross-attn)
block, feed-forward block (within the transformer decoder) and
the mapping layer (Fig. 2). Our observations include: (i) editing
cross-attention block is crucial as it directly interprets the input
speaker behaviour, and thus decides the initial understanding of the
condition; and (ii) editing multiple components generally enables
more appropriate personalised facial reaction generation, compared
to editing a single component. We assume this as human facial reac-
tion generation requires multiple steps where there could be more
than one step that is person-dependent (not commonly shared by
different listeners), and thus personalising/editing multiple compo-
nents could better simulate such processes of the target listener.

Influences of the historical facial videos’ lengths/contents:
Table 5 first demonstrates that the performances achieved for three
different length settings of the historical facial video are similar
(with FRCorr around 0.36, FRdist around 98.81, and FRDiv around
13.6), suggesting that our PCSM module can effectively model the
personalised cognitive style of the target human listener based on a

Table 6: Results achieved for different video contents.

Video FRCorr (×10−2) ↑ FRdist ↓ FRDiv ↑
MAFRG PMAFRG MAFRG PMAFRG

Video 1 38.45 35.84 94.72 98.43 13.68
Video 2 38.49 35.93 95.08 98.52 13.67
Video 3 38.65 35.99 95.05 98.51 13.68
Video 4 38.53 35.92 95.06 98.55 13.68

relatively short facial behaviour video (e.g., 10s). As demonstrated in
Table 6 and t-SNE figures in Fig. 4, these modelled personalised cog-
nitive styles are also relatively invariant and robust to behaviours
expressed by the target listener, regardless of the contents of the ex-
pressed facial behaviours, i.e., the personal cognitive styles learned
by our approach well meet the rules described in Eqa. 6.

5 Conclusion
This paper proposes the first online personalised MAFRG approach
that naturally simulates human listener’s personalised cognitive
processes in the form of a network with personalised weights. Re-
sults demonstrate that our approach achieved substantial improve-
ments in both the appropriateness and diversity compared to previ-
ous competitors. Our strategy can effectively model personalised
cognitive style from a historical face video of the target listener,
based on which more appropriate facial reactions can be generated.
The key limitation is the relatively high complexity when editing a
large number of weights, which will be addressed in future work.
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